Talin-Null Cells of Dictyostelium Are Strongly Defective in Adhesion to Particle and Substrate Surfaces and Slightly Impaired in Cytokinesis
نویسندگان
چکیده
Dictyostelium discoideum contains a full-length homologue of talin, a protein implicated in linkage of the actin system to sites of cell-to-substrate adhesion in fibroblasts and neuronal growth cones. Gene replacement eliminated the talin homologue in Dictyostelium and led to defects in phagocytosis and cell-to-substrate interaction of moving cells, two processes dependent on a continuous cross talk between the cell surface and underlying cytoskeleton. The uptake rate of yeast particles was reduced, and only bacteria devoid of the carbohydrate moiety of cell surface lipopolysaccharides were adhesive enough to be recruited by talin-null cells in suspension and phagocytosed. Cell-to-cell adhesion of undeveloped cells was strongly impaired in the absence of talin, in contrast with the cohesion of aggregating cells mediated by the phospholipid-anchored contact site A glycoprotein, which proved to be less talin dependent. The mutant cells were still capable of moving and responding to a chemoattractant, although they attached only loosely to a substrate via small areas of their surface. With their high proportion of binucleated cells, the talin-null mutants revealed interactions of the mitotic apparatus with the cell cortex that were not obvious in mononucleated cells.
منابع مشابه
Phg2, a kinase involved in adhesion and focal site modeling in Dictyostelium.
The amoeba Dictyostelium is a simple genetic system for analyzing substrate adhesion, motility and phagocytosis. A new adhesion-defective mutant named phg2 was isolated in this system, and PHG2 encodes a novel serine/threonine kinase with a ras-binding domain. We compared the phenotype of phg2 null cells to other previously isolated adhesion mutants to evaluate the specific role of each gene pr...
متن کاملThe multi-FERM-domain-containing protein FrmA is required for turnover of paxillin-adhesion sites during cell migration of Dictyostelium.
FERM domain proteins, including talins, ERMs, FAK and certain myosins, regulate connections between the plasma membrane, cytoskeleton and extracellular matrix. Here we show that FrmA, a Dictyostelium discoideum protein containing two talin-like FERM domains, plays a major role in normal cell shape, cell-substrate adhesion and actin cytoskeleton organisation. Using total internal reflection fluo...
متن کاملSadA, a novel adhesion receptor in Dictyostelium
Little is known about cell-substrate adhesion and how motile and adhesive forces work together in moving cells. The ability to rapidly screen a large number of insertional mutants prompted us to perform a genetic screen in Dictyostelium to isolate adhesion-deficient mutants. The resulting substrate adhesion-deficient (sad) mutants grew in plastic dishes without attaching to the substrate. The c...
متن کاملAdhesion-dependent and contractile ring-independent equatorial furrowing during cytokinesis in mammalian cells.
Myosin II-dependent contraction of the contractile ring drives equatorial furrowing during cytokinesis in animal cells. Nonetheless, myosin II-null cells of the cellular slime mold Dictyostelium divide efficiently when adhering to substrates by making use of polar traction forces. Here, we show that in the presence of 30 microM blebbistatin, a potent myosin II inhibitor, normal rat kidney (NRK)...
متن کاملGenetic and morphological evidence for two parallel pathways of cell-cycle-coupled cytokinesis in Dictyostelium.
Myosin-II-null cells of Dictyostelium discoideum cannot divide in suspension, consistent with the dogma that myosin II drives constriction of the cleavage furrow and, consequently, cytokinesis (cytokinesis A). Nonetheless, when grown on substrates, these cells exhibit efficient, cell-cycle-coupled division, suggesting that they possess a novel, myosin-II-independent, adhesion-dependent method o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of Cell Biology
دوره 138 شماره
صفحات -
تاریخ انتشار 1997